In the past ten years, CAD/CAM restorations have been established as standard in implant prostheses. The advantages of such restorations include the chairside use of full ceramics and digital impressions. Owing to the introduction of ceramic blocks with prefabricated twist-proof screw channels, the workflow for the chairside manufacture of individual hybrid abutments and hybrid abutment crowns can be applied in daily practice. By means of the cases reported in this article, the indications, suitable materials and attachments, and related studies are discussed.

Case report

Case 1

In September 2013, a 35-year-old patient came into our practice for the first time. The general anamnesis found no peculiarities. She complained of pain in the second quadrant. The clinical and the radiological examination found that tooth 26 was not worth preserving (Fig. 1). The patient was subsequently informed of the treatment options, which were revision of the root canal filling, and a second root resection and extraction with subsequent im-
plantation. Finally, tooth 26 was extracted and im-
plantation followed 12 weeks later (4.3 mm × 9 mm
CAMLOG implants; Figs. 2–4). We decided against
closed healing and the implant was closed with a flat
gingiva former (2 mm). With this, a further operation
to expose the implant could be avoided.

Chairside workflow
Ten weeks after implantation, the prosthetic
restoration was performed in one session without
a physical model. A digital impression was taken by
means of CEREC Bluecam (Sirona Dental Systems).
Since no exposure of the implants was necessary and
there were no open wound edges, we were able to use
the powder for the scanning procedure without any
concerns (Fig. 5). After the insertion of the CAMLOG
TiBase (Sirona Dental Systems; Fig. 6), which served
as the titanium adhesive abutment for the chairside-
manufactured hybrid abutment crown made of
lithium disilicate (IPS e.max, Ivoclar Vivadent), the
appropriate scan body (Sirona Dental Systems; Fig. 7)
was placed on the TiBase. Before taking the impres-
sion, the placement of the TiBase was radiologically
controlled (Fig. 8).

The virtual construction was created by means
of CEREC Software 4.2 (Sirona Dental Systems) and
was built up similar to the crown’s construction.
An advantage of the virtual construction is the
more flexible control of the emergence profile. The
pressure on the gingiva can be adjusted individually,
and displacements of about 5 mm have proven to be
unproblematic.

Further parameters, such as minimum strength
and position of the screw channels, should be ad-
justed and included in the construction according to
the manufacturer’s instructions. The manufacture of
the hybrid abutment crown was achieved with the
CEREC MC XL milling unit (Sirona Dental Systems;
Fig. 9). After the colour determination, the low
translucency A2 A16 (L) ceramic block was selected.

After glazing and colouring, the crystallisation or
combination firing was done (Programat CS, Ivoclar
Vivadent). The monolithic polished abutment crown
was then extra-orally attached (Multilink Hybrid
Abutment, Ivoclar Vivadent) to the TiBase (Fig. 10).
The hybrid abutment crown was screwed in and the
Fig. 11 Intraoral view after insertion.
Fig. 12 Case 2: three months after implantation.
Figs. 13 & 14 Try-in of the hybrid abutment crown before crystallisation firing.
Fig. 15a The hybrid abutment crown on the firing tray before crystallisation firing.

Fig. 15b, c Intra-oral view of the crown.
Figs. 16–18 Case 3: implant restoration in regio 15.

Case 2 demonstrates the prosthetic restoration of an implant in region 26 (Fig. 12). Figures 13 and 14 show the try-in of the hybrid abutment crown before crystallisation firing. After the try-in, the polished screw channel was sealed with PTFE tape (3M ESPE) and composite (IPS Empress Direct, Ivoclar Vivadent; Fig. 11).

Cases 2 and 3
Figures 12 to 18 illustrate the cases of the second and third patients. Both patients were treated following the same treatment plan described in the first case.

Case 3 shows restoration in region 15 (Figs. 16–18).

Discussion
Restoration using CAD/CAM methods has been established as standard in implant prostheses. Besides the industrial manufacture of materials and the consequent high quality, the individualised, tooth-coloured design of the emergence profile and
flexibility regarding construction (angulation, dimension) are further advantages. Furthermore, digital treatment concepts offer the possibility of chairside restoration and shortened treatment duration without compromising the healing period. Systems that do not require the use of powder offer the possibility of detecting the implant position during implant insertion and thus the possibility of a prosthetic restoration during exposure. In this way, the design and dimensions of the superstructure can be ideally created without the need for individual gingiva formers. From an aesthetic aspect, it makes sense to have a natural and tooth-coloured emergence profile. In view of possible recession, the risk of exposed metallic elements can be avoided.

Conclusion

As described in the cases reported, the hybrid abutment and the hybrid abutment crown together offer a suitable alternative to full-ceramic abutments made of zirconium dioxide ceramic. Contrary to zirconium dioxide abutments, the mating surface to the implant body is made of titanium and not of zirconium dioxide ceramic. Since zirconium dioxide ceramic is harder than titanium, the implant body can be affected by material abrasion, which appears to be confirmed by recent studies. In addition, a dark discoloration of the surrounding gingiva can arise from the worn-off titanium particles, similar to amalgam tattoos. In aesthetically significant areas, such as the anterior maxillary zone, this would be a serious complication and could arise years after insertion. Regarding the adhesive bond between the TiBase and abutment body, the initial data is very promising. If adhesion is performed carefully according to manufacturer’s instructions, it should not fail. Finally, further studies are needed to clarify the biocompatibility of adhesive gaps with the surrounding tissue positioned 0.4 mm from the implant shoulder and ideally also from the bone.

Contact

Dr Arzu Tuna
Dr Umut Baysal
Praxis am Nordwall
Nordwall 2
57439 Attendorn, Germany
www.zahnarzt-attendorn.de